古典舞教案5篇

时间:
Surplus
分享
下载本文

教案需要帮助根据学生的学习需求来制定,一份实用的教案能够帮助我们更好地掌握教学进度和学生的学习状况,及时调整教学策略和方法,就职范文网小编今天就为您带来了古典舞教案5篇,相信一定会对你有所帮助。

古典舞教案5篇

古典舞教案篇1

一,教材的地位和作用

本节课是中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,文科生不学习排列组合的情况下教学的 。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

二,教学目标

1、知识目标

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2、能力目标

根据本节课的内容和学生的实际水平,通过抽牌游戏让学生理解古典概型的定义,引领学生探究古典概型的概率计算公式,归纳出求基本事件数的方法-列举法。

3 、情感目标

树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

三,教学的重点和难点

重点:理解古典概型的'概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验的概率模型是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四,教具

计算机多媒体,黑板,粉笔,教棒

五,教学方法

探究式与讲授式相结合

六,教学过程

前面我们学习了随机事件及其概率,今天我们将学习古典概型,古典概型是最简单,而且最早被人们所认识的一种概率模型,大约在1812年著名数学家拉普拉斯就已经注意并研究了古典概型概率的计算。下面先看一个抽牌游戏。

抽牌游戏:

有红桃1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红桃的概率有多大?

古典舞教案篇2

教材分析

? 教材地位及作用 本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。 ? 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。 教学难点 如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。 教

目标 知识与技能

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法

根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

情感态度与价值观

概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。 根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。 ?

项 目 内 容 师生活动 理论依据或意图 

过程分析 ??

提出问题引入新课 在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。

教师最后汇总方法、结果和感受,并提出问题?

用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点? 学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。 通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

二思考交流形成概念

在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是 ;

在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是 。

我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。 学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。 让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运 用对立统一的辩证唯物主义观点来分析问题的一种方法。

教师的注解可以使学生更好的把握问题的关键。 项 目 内 ?容 师生活动 理论依据或意图 教

过程分析

二思考交流形成概念 例1 从字母 中任意取出两个不同字母的试验中,有哪些基本事件?

分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。

我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。

(树状图)

解:所求的基本事件共有6个:

, , ,

, ,

观察对比,发现两个模拟试验和例1的共同特点:

试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是 ;

试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是 ;

例1中所有可能出现的基本事件有“a”、“b”、“c”、“d”、“e”和“f”6个,并且每个基本事件出现的可能性相等,都是 ;

经概括总结后得到:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

思考交流:

(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

学生互相交流,回答补充,教师归纳。 将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。

培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出相同和不同点,能让学生很好的理解古典概型。从而突出了古典概型这一重点。

两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。 项 目 内 容 师生活动 理论依据或意图 教

过程分析 思考交流形成概念 答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么?

答:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。 ? ? 三

观察分析推导方程 问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

分析:

实验一中,出现正面朝上的概率与反面朝上的概率相等,即

p(“正面朝上”)=p(“反面朝上”)

由概率的加法公式,得

p(“正面朝上”)+p(“反面朝上”)=p(必然事件)=1

因此 p(“正面朝上”)=p(“反面朝上”)=

即 试验二中,出现各个点的概率相等,即

p(“1点”)=p(“2点”)=p(“3点”)

=p(“4点”)=p(“5点”)=p(“6点”)

反复利用概率的加法公式,我们有

p(“1点”)+p(“2点”)+p(“3点”)+p(“4点”)+p(“5点”)+p(“6点”)=p(必然事件)=1

所以p(“1点”)=p(“2点”)=p(“3点”)

=p(“4点”)=p(“5点”)=p(“6点”)=

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

p(“出现偶数点”)=p(“2点”)+p(“4点”)+p(“6点”)= + + = =

即 根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系。 鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

古典舞教案篇3

一、教学目标:

1、知识与技能:

(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;

(2)掌握古典概型的概率计算公式:p(a)=

2、过程与方法:

(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感态度与价值观:

通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点。

二、重点与难点:

重点是掌握古典概型的概念及利用古典概型求解随机事件的概率;

难点是如何判断一个试验是否是古典概型,分清一个古典概型中某随机事件包含的基本事件的个数和实验中基本事件的总数。

三、教法与学法指导:

根据本节课的特点,可以采用问题探究式学案导学教学法,通过问题导入、问题探究、问题解决和问题评价等教学过程,与学生共同探讨、合作讨论;应用所学数学知识解决现实问题。

四、教学过程:

1、创设情境:(1)掷一枚质地均匀的硬币的实验;

(2)掷一枚质地均匀的骰子的试验。

师生共同探讨:根据上述情况,你能发现它们有什么共同特点?

学生分组讨论试验,每人写出试验结果。根据结果探究这种试验所求概率的特点,尝试归纳古典概型的定义。

在试验(1)中结果只有2个,即正面朝上或反面朝上,它们都是随机事件。

在试验(2)中,所有可能的实验结果只有6个,即出现1点2点3点4点5点和6点,它们也都是随机事件。

2、基本概念:

(看书130页至132页)

(1)基本事件、古典概率模型。

(2)古典概型的概率计算公式:p(a)= 。

3、例题分析:

(呈现例题,深刻体会古典概型的两个特征

根据每个例题的不同条件,让每个学生找出并回答每个试验中的基本事件数和基本事件总数,分析是否满足古典概型的特征,然后利用古典概型的计算方法求得概率。)

例1从字母a,b,c,d中任意取出两个不同的试验中,有哪些基本事件?

分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。

解:所有的基本事件共有6个:a={a,b},b={a,c},c={a,d},d={b,c},e={b,d},f={c,d}。

练1:连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面。

(1)写出这个试验的基本事件;

(2)求出基本事件的总数;

解:

基本事件有(正,正,正)(正,正,反)(正,反,正)(正,反,反)(反,正,正)

(反,正,反)(反,反,正)(反,反,反)

基本事件总数是8。

上述试验和例1的共同特点是:

(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件出现的可能性相等。

我们将具有这两个基本特点的概率模型称为古典概率模型,简称古典概型。

古典概型具有两大特征:有限性、等可能性。

只具有有限性的不是古典概型,只具有等可能性的也不是古典概型。

基本事件的概率:

一般地,对于古典概型,如果试验的n个基本事件为a1,a2an,由于基本事件是两两互斥的,则由互斥事件的概率加法公式得

p(a1)+p(a2)++p(an)=p(a1a2 an)=p(必然事件)=1

又因为每个基本事件发生的可能性相等,即p(a1)= p(a2)==p(an),代入上式得

p(ai)=1/n(i=1n)

所以,在基本事件总数为n的古典概型中,每个基本事件发生的概率为1/n。

若随机事件a包含的基本事件数为m,则p(a)=m/n

对于古典概型,任何事件a的概率为:

(把课本例题改成练习,让学生自己解决,比老师一味的讲,要好得多)

练习2:单选题是标准化考试中常用的题型,一般是从a,b,c,d四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?

答案:0、25

例2:同时掷黑白两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

(通过具体事例,让学生自己找出答案,分析是否满足古典概型的两个特征,揭示古典概型的适用范围和具体说法。)

解:(1)掷一个骰子的结果有6种。我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种。

(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1)

其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记忆事件为a)有4种,因此,由于古典概型的概率计算公式可得p(a)= =

例3假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,9十个数字中的任意一个。假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?

答案:p(试一次密码就能取到钱)=

(人们为了方便记忆,通常用自己的生日作为储蓄卡的.密码。当钱包里既有身份证又有储蓄卡时,密码泄露的概率很大,因此用身份证上的号作为密码是不安全的,从自己身边的现实生活中培养学生应用数学解决实际问题的能力)

例5某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽取2听,检测出不合格产品的概率有多大?

答案:p(a)= + + =0。6

(请学生自己先阅读例题,理解题意,教师适时点拨、指导。待学生充分思考、酝酿,具有初步的思路之后,请学生说出他们的解法。)

4、当堂检测:

(1)。在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是()

a、b、c、d、以上都不对

(2)、盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是

a、b、c、d、

(3)、在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是。

(4)、抛掷2颗质地均匀的骰子,求点数和为8的概率。

5、评价标准:

(1)、b[提示:在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为,因此选b。]

(2)、c[提示:(方法1)从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁订(记为事件a)包含8个基本事件,所以,所求概率为p(a)= = 。(方法2)本题还可以用对立事件的概率公式求解,因为从盒中任取一个铁钉,取到合格品(记为事件a)与取到不合格品(记为事件b)恰为对立事件,因此,p(a)=1—p(b)=1— = ]

(3)、 [提示;记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为。本题还可以利用对立事件的概率和为1来求解,对于求至多至少等事件的概率头问题,常采用间接法,即求其对立事件的概率p(a),然后利用p(a)1—p(a)求解]。

4、解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1号骰子的一个结果,因此同时掷两颗骰子的结果共有66=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为。

五、课堂小结:

本节主要研究了古典概型的概率求法,解题时要注意两点:

(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;

①求出总的基本事件数;

②求出事件a所包含的基本事件数,然后利用公式p(a)=

古典舞教案篇4

课 题 古典概型 课 型 高一新授课 教学目标 理解古典概型及其概率计算公式,并能计算有关随机事件的概率 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 教学难点 如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 教学方法 导学式、启发式教学 教 具 多媒体辅助 教学过程 教学内容与教师活动 学生活动 设计意图

创设情境引出课题

问题1:考察两个试验:

(1)抛掷一枚质地均匀的硬币的试验;

(2)掷一颗质地均匀的骰子的试验。

问:在这两个试验中,可能的结果分别有哪些?

教师引导学生思考 问题1:学生思考结果且给出基本事件的特点1

问题1设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。

问题2:在掷骰子试验中,随机试验“出现偶数点”可以由哪些事件组成?教师引导学生思考 问题2:学生归纳与总结, 问题2设计意图:通过举例,引出基本事件的特点2。 问题3:基本事件有什么特点?

教师加以引导与启发,利用基本事件的关系发现基本事件的特点 问题3:学生口答 问题3设计意图:提高学生概括总结能力 问题4:例1、从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?教师引导学生列举时做到不重复、不遗漏,教师指出画树状图是列举法的基本方法。

问题4:学生列举出基本事件。 问题4引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到研究对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

通过设疑引出概念

问题1:(1)请问掷一枚均匀硬币出现正面朝上的概率是多少?

(2)掷一枚均匀的骰子各种点数向上的概率是多少?其中出现偶数点向上的概率是多少?让学生带着好奇心去观察数学模型,老师启发引导学生推导公式。

问题1学生得到答案且深层次的考虑问题

问题1设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。

问题2:上述概率公式的推导过程中基本事件有什么特点?教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性) 问题2学生观察和初步概括归纳古典概率模型及特征

问题2设计意图培养运用从特殊到一般,从具体到抽象数学思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。

问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么? 问题3学生互相交流,回答补充得到的答案 问题3设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。

例题分析加深理例题分析加深理

例2、在数学考试中单选题是常用的题型,一般是从a,b,c,d四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

教师引导学生思考是否满足古典概型的特征?教师对学生的回答进行归纳与总结

例2学生思考、讨论、交流,说出看法

例2设计意图:通过例题的学习让学生学会对古典概型的判断,就是看是否满足古典概型的两个基本特征:有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式。

变式:假设我们现在将单选题改为不定项选择题,不定项选择题从a、b、c、d四个选项中选出所有正确答案,假设还是这名考生,他随机的选择一个答案,他猜对的概率是多少

教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。 变式:学生在老师的引导下列举15种可能出现的答案,并且判断是否满足古典概型的特征,利用概率公式求值。 变式设计意图:让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣。

例3、 同时掷两个骰子,计算:(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

教师将学生的结果汇总展示,学生给出的答案可能会有多种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。

教师分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。

例3学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等,学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式

例3设计意图:引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

古典舞教案篇5

教材分析

(一) 教材地位、作用

?古典概型》是高中数学人教a版必修3第三章概率的内容,教学安排是2课时,本节是第一课时。是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型

也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。

(二)教材处理:

学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。对典型例题进行分析,以巩固概念,掌握解题方法。

二、三维目标

知识与技能目标:

(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;

(2)理解古典概型的概率计算公式 :p(a)=

(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.

三、 教学重点与难点

1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

2、难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数

四、教法与学法分析

教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

五、教学基本流程

六、教学设计

教学设计 设计意图 师生互动 1 课前模拟试验:

①掷一枚质地均匀的硬币的试验;

②掷一枚质地均匀的骰子的试验。

问题1 用模拟试验的方法来求某一随机事件的概率好不好?为什么?

问题2 分别说出上述两试验的所有可能的实验结果是什么?每个结果之间都有什么关系? 模拟实验的目的是创建与新课内容相关的实验模型,把问题具体化,过渡到新课时自然有序,同时也培养了学生的动手能力和与人合作的能力。

问题1的引出,激发学生的求知欲望和学习兴趣

让学生思考讨论问题2,直接进入新课,把课堂交给学生。

学生——实验、思考、讨论

老师——利用试验给出所有可能出现的结果即基本事件。

老师——加以引导与启发,利用基本事件的关系发现基本事件的特点。

学生——归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力 2 问题一:什么是基本事件?基本事件有什么特征?

例从字母a,b,c,d中任意选出两个不同字母的试验中,有哪些基本事件?

练习(1)在掷骰子的试验中,事件“出现偶数点 ”是哪些基本事件的并事件?

(2)先后抛掷两枚均匀的硬币的试验中,有哪些基本事件?

问题二:上述试验和练习的共同特点是什么?

(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件出现的可能性相等 为了引出古典概型的概念,设计了练习。通过列举法列举基本事件,进一步理解与巩固基本事件的概念;然后设疑:“类比试验与练习中基本事件有什么共同点?”,通过问题的解决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念。 老师——引导学生列举时做到不重复、不遗漏

学生——列举出基本事件

老师——引导学生找出共性。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。 3 思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率又如何计算?

观察:掷硬币与掷骰子的试验完成 例1 .(1)求在抛掷一枚硬币观察哪个面向上的试 验中“正面朝上”和“反面朝上”这2个基本事件的概率?

(2)在抛掷一枚骰子的试验中,出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”这6个基本事件的概率?

(3)在掷骰子的试验中,事件“出现偶数点”发生的概率是多少?

总结:你能从这些试验中找出规律,总结出公式吗?

了解古典概型的概念之后,就要引领学生探究概率公式。为了突破这个重点我设计了3个环节

首先,让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。

其次,公式的推导是在老师的启发引导下,让学生带着好奇心去观察数学模型。(模型演示)多媒体引入课堂为学生提供了广阔的空间,通过直观感受,使学生对规律的总结快速而准确。

最后,学生在回答例1问题的过程中,逐步感受由特殊性演变到一般性,最终得出结论。过程自然而有序,让学生体验到认知的自然升华,感受数学美妙的意境。 老师——提出问题

古典舞教案5篇相关文章:

班会教案模板5篇

中班《礼物》教案5篇

小班119教案5篇

魔术瓶小班教案5篇

山羊跳教案5篇

中班体教案反思5篇

小班绳手工教案5篇

桃花笑教案5篇

创意美术2023教案5篇

中班故事活动教案5篇

古典舞教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
120072