教案的适切性是课程设计的重要一环,它直接关系到教学的成功与否,教师需要了解学生的强项和弱项,以便在教案中提供个性化的支持,就职范文网小编今天就为您带来了分数除法教案优质8篇,相信一定会对你有所帮助。
分数除法教案篇1
教学目标
(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。
教学重点、难点
重点、难点:理解分数与除法的关系。
教学过程
一、复习铺垫
1、口述下列分数的意义:
157/9
2、口答列式计算。
(1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?
120÷12=10(人)
(2)把12米长的钢管平均截成6段,每段长多少米?
12÷6=2(米)
归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。
如果把(2)题的12米改成1米,如何列式?
1÷6
它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。
出示课题“分数与除法的关系”。
二、教学新知
1、教学例2。
把1米长的钢管,平均截成6段,每段长多少米?
(1)边作图边讲解。
“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。所以
1÷6=1/6(米)
(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)
2、教学例3。
把3只月饼平均分成4份,每份是多少?
教学过程
备 注
(1)读题后指名学生列式:
3÷4
(2)边讲解边出示图式
(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。
第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。
得出3÷4=3/4(只)
小结:从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。
3、归纳分数与除法的关系。
(1)观察例2、例3的算式。
1÷6=1/6(米)
3÷4=3/4(只)
(2)思考分数与除法有什么关系?
(3)结论:
被除数÷除数=被除数/除数
(4)练一练:
课本p75第1题。
把分数改写成除法算式。
4/7=()÷()21/25=()÷()
14/27=()÷()7÷()=7/()
讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?
结论:在除法中,除数不能为零。
在分数中,分母不能为零。
三、练习反馈
1、7分米是几分之几米?
23分钟是几分之几小时?
学生独立练习后集中反馈,说一说思考过程。
小结:“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。
把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。
2、练一练:
课本p76第5题填在书上。
四、课堂练习
课本p76第2、3、4题。
五、课后作业《作业本》
学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。
分数除法教案篇2
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:弄清单位1的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:设买来大米x千克。x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。解:设航模小组有人。
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
教学追记:
本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。
分数除法教案篇3
分数除法一(分数除以整数)
教学目标和要求
1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2, 探索并掌握分数除以整数的计算方法,并能正确计算。
3, 能够运用分数除以整数解决简单的实际问题。
教学重点
分数除以整数的计算方法。
教学难点
分数除以整数的计算方法
教学准备
教学时数
1课时
教学过程
一, 涂一涂,算一算
1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
2, 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
(1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。
(2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的.倒数。
二, 填一填,想一想
1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2
2, 师导学生根据前面的三个活动,总结算法。3,
3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。
三, 试一试
练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。
四, 练一练
1,第26页第2,3题,让学生独立解决。
教学内容(课题)
分数除法教案篇4
教学目标:
4、学习运用线段图帮助分析数量关系。
5、加强列方程的思维训练。
6、培养学生分析问题解决问题的能力。
教学过程:备注
活动一:复习与准备
1、根据题意列出方程。
(1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?
(2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?
活动二:出示例2
一、
1、审题。
2、看例题的插图,理解题目的意思,说说知道了什么,要求什么
3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。
4、理解数量关系
二、
1、分析、解答
2、说说数量关系。
3、学生根据得到的数量关系列方程解答。
4、交流各自的解法。
小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
活动三:
巩固联系:
1、41页7、8题
2、41页10题
板书设计
分数除法教案篇5
第课时分数与除法
1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。
2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。
3、能运用分数与除法的关系解决相关的问题。
4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。
?重点】理解和掌握分数与除法的关系。
?难点】理解用分数可以表示两个数相除的商。
?教师准备】 ppt课件,口算卡片。
?学生准备】 3个完全相同的圆片,剪刀。
填一填。
(1)表示的意义是()。
(2)的分数单位是(),它有()个这样的分数单位。
?参考答案】
(1)4个是多少
(2)7
老师出示口算卡片,学生口答。
8÷4= 15÷5= 12÷3=
5÷4= 6÷5= 7÷3=
师:比较这6道题的商,你发现了什么
预设生:上面3题的商没有余数,下面3题的商都有余数。
师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)
由比较两组口算题的结果引入课题,使学生明确用分数可以表示除法的商。
师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。
预设生:可以用小数表示商,或者除到个位后,用余数表示结果。
师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)
通过老师提问,引起学生思考,激发学习欲望。
一、教学例1,掌握用分数表示除法的商的方法。
1、ppt出示例1。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:1÷3。
(3)用ppt出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。
预设生:每人分得个。
老师根据学生回答板书:1÷3=(个)。
2、巩固练习。
用分数表示下面各题的商。
3÷7= 5÷8= 9÷10=
21÷32= 4÷11= 6÷13=
?参考答案】
使学生了解用分数表示商的方法。
二、教学例2,使学生理解分数与除法的关系。
1、ppt出示例2。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:3÷4。
(3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。
(4)用ppt出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。
预设生:每人分得个。
老师根据学生的'回答进行板书:3÷4=(个)。
2、老师引导学生观察除法算式与分数,探究它们之间的关系。
(1)用文字进行表述例1和例2的算式。
1÷3=
3÷4=
被除数÷除数的结果怎样表示得到:
被除数÷除数=
(2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。
预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。
(3)小组讨论,用字母表示出分数与除法的关系,然后派代表发言。
预设生:a÷b=。
(4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。
老师根据学生的回答进行板书。
a÷b=(b≠0)
被除
除数
数
(5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。
通过小组讨论,使学生明确分数与除法的关系。
三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。
1、ppt出示例3。
(1)学生读题,理解题意。
(2)出示自学要求:
①想一想,答案是多少
②有什么办法说明自己的答案是正确的怎样说明
③题中的两个问题有什么关系
学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。
(3)组织学生汇报自学情况,展示答案。
自学要求①:
预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。
自学要求②:
预设生:可以通过画图分析,证明自己的答案是正确的。
(根据学生回答,展示学生画的图或用ppt出示教材第50页的图)
自学要求③:
预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。
2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)
3、师:根据题意,你们还能提出其他的数学问题并解答吗
(1)学生在小组里讨论,提出问题并解答。
(2)各小组展示提出的问题和解答的过程。
预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。
生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。
……
4、巩固练习。
五、(1)班有男生23人,女生22人。
(1)女生人数是男生人数的几分之几
(2)女生人数是全班人数的几分之几
(3)男生人数是全班人数的几分之几
学生独立解答,指名回答,集体订正。
分数除法教案篇6
【学习目标】
1、掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的
解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、培养并提高分析、判断、探索能力及初步的逻辑思维能力。
3、提高解答应用题的能力。
【学习重难点】
1、重点是弄清单位“1”的量,会分析题中的数量关系。
2、难点是分析题中的数量关系。
【学习过程】
一、复习题:
小红家买来一袋大米,重40千克,吃了5,还剩多少千克? 8
1、分析题目的条件和问题,画出线段图。
2、交流讨论并解答。组内检查核对,提出质疑。
1”,如果单位“1”的具体数量是已
知的,要求单位“1”的'几分之几是多少,就可以根据分数乘法的意义,
直接用乘法计算。
二、探索新知
1、补充例题:小红家买来一袋大米,吃了
(1)吃了5,还剩15千克。买来大米多少千克? 85是什么意思?应该把哪个数量看作单位“1”? 8
(2)理解题意,画出线段图。 (3)根据线段图,分析数量关系式:____________________________
(4)根据等量关系式解答问题。___________________________
2、学习例2
(1)阅读例5的主题图及题目,用自己的话表述题意,说一说“美术小组的人数比航模
小组多1”的含义,把谁看作单位“1”?_________________________________ 4
(2)自己动手,画线段图表示两个小组的人数,将已知条件和问题标注在线段图上,图
中的未知数可以用x表示。
(3)结合线段图,写出等量关________________________________________________
(4)列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)
三、知识应用:独立完成p40练习十第4题,组长检查核对,提出质疑。
四、层级训练:1、巩固训练:完成练习十第10--13题
2、拓展提高:练习十第14题以及p42最后一题“思考练习”。
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
分数除法教案篇7
教学目标
1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。
2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。
教学重点和难点
确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。
教学过程
(一)复习准备
1.找出单位1。
2.出示第88页的复习题。
(1)画图分析并列式解答。
(2)说说你是怎样思考和解答的?
(3)学生分析教师板演线段图。
3.导入:
今天我们继续学习分数应用题。
(二)学习新课
现在老师把这道题改动一下。
1.出示例6。
千克?
2.分析解答。
(1)读题,找出已知条件和问题。
(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的
不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)
(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位
(4)谁来分析这个条件?
成8份,吃了的占其中的5份。)
学生分析的同时教师板演线段图:
(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?
生在黑板上画出:
(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)
(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)
(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它
(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)
(10)试着在练习本上列方程解答。
(11)谁能说说你是怎样解答的?
生口述:
解 设买来大米x千克。
答:买来大米40千克。
题中的等量关系式是什么?
(买来的重量还剩几分之几=还剩的重量。)
3.小结。
通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)
解答方法相同吗?为什么?
(解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)
4.出示例7。
烧煤多少吨?
(1)读题,找出已知条件和所求问题。
(3)画图分析解答。
①从这个条件可以看出题中是几个数量相比?(两个数量相比。)
追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)
我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)
②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)
下一步画什么?(实际烧煤吨数。)
指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的
这两条线段谁为已知?谁为未知?
在提问回答的过程中教师板演线段图:
③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?
(计划烧煤吨数-节约吨数=实际烧煤吨数。)
计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)
④试做在练习本上。
⑤反馈:说说你的解答方法及依据。
解 设四月份原计划烧煤x吨。
答:四月份原计划烧煤135吨。
(1)学生独立画图分析并列式解答。
(2)反馈提问:
②你用什么方法解答的?依据的等量关系式是什么?
(三)课堂总结
今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?
(数量间的等量关系相同,解答方法不同。)
(四)巩固反馈
(1)课本第91页的第2题。
(2)根据列式补充条件:
(五)布置作业
课本第91页第1,3题。
课堂教学设计说明
本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。
由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。
在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
分数除法教案篇8
教学目标
1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。
2.能运用所学知识解决简单的实际问题,提高综合解题的能力。
3.培养学生认真审题、准确计算的好习惯。
重点难点
重点:掌握分数四则混合运算的顺序。
难点:正确计算分数四则混合运算。
教具学具
投影仪。
教学过程
一、导入
1.笔算下面各题。
24÷4+16×5-37 46+50×[(900-90)÷9]
提问:整数四则混合运算的顺序是什么?
2.计算下面各题。
二、教学实施
(5)分析运算顺序。
提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?
指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。
2.巩固练习。
完成教材第33页“做一做”。
学生说明运算顺序。
3.变式练习。
学生可以先讨论怎样计算,再明确顺序进行计算。
老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。
三、课堂作业新设计
1.填空。
四、思维训练参考答案
思维训练
1.d 2.略
教材习题
教材第33页做一做
板书设计
分数四则混合运算
运算顺序
(1)不含括号的分数混合运算的运算顺序:在一个分数混合运算算式里,如果只
含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二
级运算,再算第一级运算。
(2)有括号的分数混合运算的运算顺序:在一个分数混合运算的'算式里,如果既
有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
备课参考教材与学情分析
例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。
课堂设计说明
1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。
2.通过解决问题,理解分数混合运算的顺序。
教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。
3.注重直观操作,渗透数学的思想和学习方法。
直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。
分数除法教案优质8篇相关文章: